fpga4student.com FPGA digital design projects using Verilog/ VHDL

Monday, January 16, 2017

Basic digital logic components in Verilog HDL

    In this project, basic blocks in digital logic design such as D-Flip-Flop, adders, ALU, registers, memory, multiplexers, decoders, counters, etc.  are implemented in Verilog HDL for beginners.

Verilog MIPS

Verilog code for full adder:
 `timescale 1 ps / 100 fs  
 module adder(sum,cout,a,b,cin);  
 input  a,b,cin;  
 output cout,sum;  
 // sum = a xor b xor cin  
 xor #(50) (sum,a,b,cin);  
 // carry out = a.b + cin.(a+b)  
 and #(50) and1(c1,a,b);  
 or #(50) or1(c2,a,b);  
 and #(50) and2(c3,c2,cin);  
 or #(50) or2(cout,c1,c3);  
 endmodule   
Verilog code for D Flip Flop:
 module D_FF (q, d, rst_n, clk,init_value);  
 output q;  
 input d, rst_n, clk,init_value;  
 reg q; // Indicate that q is stateholding  
 always @(posedge clk or negedge rst_n)  
 if (~rst_n)  
 q <= init_value;     // On reset, set to 0  
 else  
 q <= d; // Otherwise out = d   
 endmodule  
Verilog code for 4-bit counter:
 module counter(count,enable,clk,rst_n);  
  input enable,clk,rst_n;  
  output reg[3:0] count;  
  always @(posedge clk or negedge rst_n)  
  begin  
   if(~rst_n) counter <= 4'b0000;  
   else if(enable)  
    counter <= counter + 4'b0001;  
  end  
 endmodule  
Verilog code for Linear Feedback Shift Register:
 module internal_xor_5_bit_lfsr(input clk, rst_n,   
                 input[4:0] S_initial,  
                 output[4:0] Sout);  
 wire [4:0] s_reg;  
 wire d_xor;  
 D_FF s0(.q(s_reg[0]), .d(s_reg[4]), .rst_n(rst_n), .clk(clk),.init_value(S_initial[0]));  
 D_FF s1(.q(s_reg[1]), .d(s_reg[0]), .rst_n(rst_n), .clk(clk),.init_value(S_initial[1]));  
 xor xor_u(d_xor,s_reg[1],s_reg[4]);  
 D_FF s2(.q(s_reg[2]), .d(d_xor), .rst_n(rst_n), .clk(clk),.init_value(S_initial[2]));  
 D_FF s3(.q(s_reg[3]), .d(s_reg[2]), .rst_n(rst_n), .clk(clk),.init_value(S_initial[3]));  
 D_FF s4(.q(s_reg[4]), .d(s_reg[3]), .rst_n(rst_n), .clk(clk),.init_value(S_initial[4]));  
 assign Sout = s_reg;  
 endmodule    
Verilog code for ALU:
 module alu(       
      input          [15:0]     a,          //src1  
      input          [15:0]     b,          //src2  
      input          [2:0]     alu_control,     //function sel  
      output     reg     [15:0]     result,          //result       
      output zero  
   );  
 always @(*)  
 begin   
      case(alu_control)  
      3'b000: result = a + b; // add  
      3'b001: result = a - b; // sub  
      3'b010: result = a & b; // and  
      3'b011: result = a | b; // or  
      3'b100: begin if (a<b) result = 16'd1;  
                     else result = 16'd0;  
                     end  
      default:result = a + b; // add  
      endcase  
 end  
 assign zero = (result==16'd0) ? 1'b1: 1'b0;  
 endmodule  
Verilog code for multiplexer:
 `timescale 1 ps / 100 fs  
 module mux2x5to5( AddrOut,Addr0, Addr1, Select);  
 output [4:0] AddrOut; // Address Out  
 input [4:0] Addr0, Addr1; // Address In 1 and 2  
 input Select;  
 mux21 mux0(AddrOut[0],Addr0[0],Addr1[0],Select);  
 mux21 mux1(AddrOut[1],Addr0[1],Addr1[1],Select);  
 mux21 mux2(AddrOut[2],Addr0[2],Addr1[2],Select);  
 mux21 mux3(AddrOut[3],Addr0[3],Addr1[3],Select);  
 mux21 mux4(AddrOut[4],Addr0[4],Addr1[4],Select);  
 endmodule  
 `timescale 1 ps / 100 fs  
 module mux2_1(O,A,B,sel);  
 // sel = 0 => O = A  
 // sel = 1 => O =B  
 output O;  
 input A,B,sel;  
 not #(50) not1(nsel,sel);  
 and #(50) and1(O1,A,nsel);   
 and #(50) and2(O2,B,sel);  
 or #(50) or2(O,O1,O2);  
 endmodule  
Verilog code for register file:
 `timescale 1ns / 1ps  
 module register_file  
 (  
      input                    clk,  
      input                    rst,  
      // write port  
      input                    reg_write_en,  
      input          [2:0]     reg_write_dest,  
      input          [15:0]     reg_write_data,  
      //read port 1  
      input          [2:0]     reg_read_addr_1,  
      output          [15:0]     reg_read_data_1,  
      //read port 2  
      input          [2:0]     reg_read_addr_2,  
      output          [15:0]     reg_read_data_2  
 );  
      reg     [15:0]     reg_array [7:0];  
      // write port  
      //reg [2:0] i;  
      always @ (posedge clk or posedge rst) begin  
           if(rst) begin  
                reg_array[0] <= 15'b0;  
                reg_array[1] <= 15'b0;  
                reg_array[2] <= 15'b0;  
                reg_array[3] <= 15'b0;  
                reg_array[4] <= 15'b0;  
                reg_array[5] <= 15'b0;  
                reg_array[6] <= 15'b0;  
                reg_array[7] <= 15'b0;       
           end  
           else begin  
                if(reg_write_en) begin  
                     reg_array[reg_write_dest] <= reg_write_data;  
                end  
           end  
      end  
      assign reg_read_data_1 = ( reg_read_addr_1 == 0)? 15'b0 : reg_array[reg_read_addr_1];  
      assign reg_read_data_2 = ( reg_read_addr_2 == 0)? 15'b0 : reg_array[reg_read_addr_2];  
 endmodule   
Verilog code for memory:
 `timescale 1ns / 1ps  
 module instr_mem          // a synthesisable rom implementation  
 (  
      input     [15:0]     pc,  
      output wire     [15:0]          instruction  
 );  
      wire [3 : 0] rom_addr = pc[5 : 2];  
      /* lw     $3, 0($0) --   
           Loop:     slti $1, $3, 50  
           beq $1, $0, Skip  
           add $4, $4, $3   
           addi $3, $3, 1   
           beq $0, $0, Loop--  
           Skip  
 */  
      reg [15:0] rom[15:0];  
      initial  
      begin  
                rom[0] = 16'b1000000110000000;  
                rom[1] = 16'b0010110010110010;  
                rom[2] = 16'b11011100011001111;  
                rom[3] = 16'b1101110111011001;  
                rom[4] = 16'b1111110110110001;  
                rom[5] = 16'b1100000001111011;//finish program  
                rom[6] = 16'b0000000000000000;  
                rom[7] = 16'b0000000000000000;  
                rom[8] = 16'b0000000000000000;  
             rom[9] = 16'b0000000000000000;  
                rom[10] = 16'b0000000000000000;  
                rom[11] = 16'b0000000000000000;  
                rom[12] = 16'b0000000000000000;  
                rom[13] = 16'b0000000000000000;  
                rom[14] = 16'b0000000000000000;  
                rom[15] = 16'b0000000000000000;  
      end  
      assign instruction = (pc[15:0] < 64 )? rom[rom_addr[3:0]]: 16'd0;  
 endmodule   
Verilog code for decoder:
 module decoder(WriteEn,RegWrite, WriteRegister);  
 input RegWrite;  
 input [4:0] WriteRegister;  
 output [31:0] WriteEn;  
 wire [31:0] OE; // Output Enable  
 dec5to32 dec(OE,WriteRegister);  
 assign WriteEn[0]=0;  
  and #(50) gate1(WriteEn[1],OE[1],RegWrite);  
  and #(50) gate2(WriteEn[2],OE[2],RegWrite);  
  and #(50) gate3(WriteEn[3],OE[3],RegWrite);  
  and #(50) gate4(WriteEn[4],OE[4],RegWrite);  
  and #(50) gate5(WriteEn[5],OE[5],RegWrite);  
  and #(50) gate6(WriteEn[6],OE[6],RegWrite);  
  and #(50) gate7(WriteEn[7],OE[7],RegWrite);  
  and #(50) gate8(WriteEn[8],OE[8],RegWrite);  
  and #(50) gate9(WriteEn[9],OE[9],RegWrite);  
  and #(50) gate10(WriteEn[10],OE[10],RegWrite);  
  and #(50) gate11(WriteEn[11],OE[11],RegWrite);  
  and #(50) gate12(WriteEn[12],OE[12],RegWrite);  
  and #(50) gate13(WriteEn[13],OE[13],RegWrite);  
  and #(50) gate14(WriteEn[14],OE[14],RegWrite);  
  and #(50) gate15(WriteEn[15],OE[15],RegWrite);  
  and #(50) gate16(WriteEn[16],OE[16],RegWrite);  
  and #(50) gate17(WriteEn[17],OE[17],RegWrite);  
  and #(50) gate18(WriteEn[18],OE[18],RegWrite);  
  and #(50) gate19(WriteEn[19],OE[19],RegWrite);  
  and #(50) gate20(WriteEn[20],OE[20],RegWrite);  
  and #(50) gate21(WriteEn[21],OE[21],RegWrite);  
  and #(50) gate22(WriteEn[22],OE[22],RegWrite);  
  and #(50) gate23(WriteEn[23],OE[23],RegWrite);  
  and #(50) gate24(WriteEn[24],OE[24],RegWrite);  
  and #(50) gate25(WriteEn[25],OE[25],RegWrite);  
  and #(50) gate26(WriteEn[26],OE[26],RegWrite);  
  and #(50) gate27(WriteEn[27],OE[27],RegWrite);  
  and #(50) gate28(WriteEn[28],OE[28],RegWrite);  
  and #(50) gate29(WriteEn[29],OE[29],RegWrite);  
  and #(50) gate30(WriteEn[30],OE[30],RegWrite);  
  and #(50) gate31(WriteEn[31],OE[31],RegWrite);  
 endmodule  
 module andmore(g,a,b,c,d,e);  
  output g;  
  input a,b,c,d,e;  
  and #(50) and1(f1,a,b,c,d),  
       and2(g,f1,e);  
 endmodule  
 module dec5to32(Out,Adr);  
 input [4:0] Adr; // Adr=Address of register  
 output [31:0] Out;  
 not #(50) Inv4(Nota, Adr[4]);  
 not #(50) Inv3(Notb, Adr[3]);  
 not #(50) Inv2(Notc, Adr[2]);  
 not #(50) Inv1(Notd, Adr[1]);  
 not #(50) Inv0(Note, Adr[0]);  
 andmore a0(Out[0], Nota,Notb,Notc,Notd,Note); // 00000  
 andmore a1(Out[1], Nota,Notb,Notc,Notd,Adr[0]); // 00001  
 andmore a2(Out[2], Nota,Notb,Notc,Adr[1],Note); //00010  
 andmore a3(Out[3], Nota,Notb,Notc,Adr[1],Adr[0]);  
 andmore a4(Out[4], Nota,Notb,Adr[2],Notd,Note);  
 andmore a5(Out[5], Nota,Notb,Adr[2],Notd,Adr[0]);  
 andmore a6(Out[6], Nota,Notb,Adr[2],Adr[1],Note);  
 andmore a7(Out[7], Nota,Notb,Adr[2],Adr[1],Adr[0]);  
 andmore a8(Out[8],  Nota,Adr[3],Notc,Notd,Note);  
 andmore a9(Out[9],  Nota,Adr[3],Notc,Notd,Adr[0]);  
 andmore a10(Out[10], Nota,Adr[3],Notc,Adr[1],Note);  
 andmore a11(Out[11], Nota,Adr[3],Notc,Adr[1],Adr[0]);  
 andmore a12(Out[12], Nota,Adr[3],Adr[2],Notd,Note);  
 andmore a13(Out[13], Nota,Adr[3],Adr[2],Notd,Adr[0]);  
 andmore a14(Out[14], Nota,Adr[3],Adr[2],Adr[1],Note);  
 andmore a15(Out[15], Nota,Adr[3],Adr[2],Adr[1],Adr[0]);  
 andmore a16(Out[16], Adr[4],Notb,Notc,Notd,Note);  
 andmore a17(Out[17], Adr[4],Notb,Notc,Notd,Adr[0]);  
 andmore a18(Out[18], Adr[4],Notb,Notc,Adr[1],Note);  
 andmore a19(Out[19], Adr[4],Notb,Notc,Adr[1],Adr[0]);  
 andmore a20(Out[20], Adr[4],Notb,Adr[2],Notd,Note);  
 andmore a21(Out[21], Adr[4],Notb,Adr[2],Notd,Adr[0]);  
 andmore a22(Out[22], Adr[4],Notb,Adr[2],Adr[1],Note);  
 andmore a23(Out[23], Adr[4],Notb,Adr[2],Adr[1],Adr[0]);  
 andmore a24(Out[24], Adr[4],Adr[3],Notc,Notd,Note);  
 andmore a25(Out[25], Adr[4],Adr[3],Notc,Notd,Adr[0]);  
 andmore a26(Out[26], Adr[4],Adr[3],Notc,Adr[1],Note);  
 andmore a27(Out[27], Adr[4],Adr[3],Notc,Adr[1],Adr[0]);  
 andmore a28(Out[28], Adr[4],Adr[3],Adr[2],Notd,Note);  
 andmore a29(Out[29], Adr[4],Adr[3],Adr[2],Notd,Adr[0]);  
 andmore a30(Out[30], Adr[4],Adr[3],Adr[2],Adr[1],Note);  
 andmore a31(Out[31], Adr[4],Adr[3],Adr[2],Adr[1],Adr[0]); // 11111  
 endmodule  
Verilog code for a 16-bit register:
 module PC_Reg(PCOut,PCin,reset,clk);  
 output [31:0] PCOut;  
 input [31:0] PCin;  
 input reset,clk;  
 D_FF dff0(PCOut[0],PCin[0],reset,clk);  
 D_FF dff1(PCOut[1],PCin[1],reset,clk);  
 D_FF dff2(PCOut[2],PCin[2],reset,clk);  
 D_FF dff3(PCOut[3],PCin[3],reset,clk);  
 D_FF dff4(PCOut[4],PCin[4],reset,clk);  
 D_FF dff5(PCOut[5],PCin[5],reset,clk);  
 D_FF dff6(PCOut[6],PCin[6],reset,clk);  
 D_FF dff7(PCOut[7],PCin[7],reset,clk);  
 D_FF dff8(PCOut[8],PCin[8],reset,clk);  
 D_FF dff9(PCOut[9],PCin[9],reset,clk);  
 D_FF dff10(PCOut[10],PCin[10],reset,clk);  
 D_FF dff11(PCOut[11],PCin[11],reset,clk);  
 D_FF dff12(PCOut[12],PCin[12],reset,clk);  
 D_FF dff13(PCOut[13],PCin[13],reset,clk);  
 D_FF dff14(PCOut[14],PCin[14],reset,clk);  
 D_FF dff15(PCOut[15],PCin[15],reset,clk);  
 D_FF dff16(PCOut[16],PCin[16],reset,clk);  
 D_FF dff17(PCOut[17],PCin[17],reset,clk);  
 D_FF dff18(PCOut[18],PCin[18],reset,clk);  
 D_FF dff19(PCOut[19],PCin[19],reset,clk);  
 D_FF dff20(PCOut[20],PCin[20],reset,clk);  
 D_FF dff21(PCOut[21],PCin[21],reset,clk);  
 D_FF dff22(PCOut[22],PCin[22],reset,clk);  
 D_FF dff23(PCOut[23],PCin[23],reset,clk);  
 D_FF dff24(PCOut[24],PCin[24],reset,clk);  
 D_FF dff25(PCOut[25],PCin[25],reset,clk);  
 D_FF dff26(PCOut[26],PCin[26],reset,clk);  
 D_FF dff27(PCOut[27],PCin[27],reset,clk);  
 D_FF dff28(PCOut[28],PCin[28],reset,clk);  
 D_FF dff29(PCOut[29],PCin[29],reset,clk);  
 D_FF dff30(PCOut[30],PCin[30],reset,clk);  
 D_FF dff31(PCOut[31],PCin[31],reset,clk);  
 endmodule  




Saturday, January 14, 2017

A low pass FIR filter for ECG Denoising in VHDL

      Let's start 2017 with a bang. In this project, a simple low pass FIR filter is implemented in VHDL for ECG Denoising. The VHDL code for the FIR filter is simulated and verified by comparing the simulated results in Modelsim with the correct results generated from Matlab. Sample ECG inputs are provided in input.txt files, the VHDL filter code reads those ECG files, apply digital filtering, and write the results into output.txt files for verification. 


ECG denoising FIR filter in VHDL

Monday, December 26, 2016

What is an FPGA? Top five reasons why I love FPGA design

FPGA stands for Field Programmable Gate Array. Let's analyze the term:

  • Field-Programmable: An FPGA is manufactured to be easily reconfigured by developers, designers or customers. To program an FPGA as a specific configuration, Verilog HDL or VHDL (Hardware Description Language) is used as the standard language.
  • Gate-Array: An FPGA consists of an array of programmable logic gates/ blocks such as AND, OR, XOR, NOT, memory elements, DSP components, etc., and reconfigurable interconnects which are to connect logic gates together for performing a specific function.
What is FPGA
Thus, FPGAs are nothing, but logic blocks and interconnects that can be programmable by Hardware Description Languages (Verilog HDL/ VHDL) to perform different complex functions. In fact, FPGAs can be used to implement almost any DSP algorithm. Some FPGAs also obtain embedded soft-core processors such as Xilinx's MicroBlaze, Altera's Nios II, etc. so that we can use C, C++, etc. to program the processor like what we do with a microcontroller. Besides, the soft processors can communicate with hardware accelerators to speed up complex DSP operations so that we can obtain a better flexible embedded system for niche applications. 

Saturday, December 24, 2016

A complete 8-bit Microcontroller in VHDL

In this project, a complete 8-bit microcontroller is designed, implemented, and operational as a full design which users can program the microcontroller using assembly language. 

The microcontroller has an 8-bit processor, a 128-byte program memory, a 96-byte RAM, 16x8-bit output ports, and 16x8-bit input ports. Users can program the microcontroller by inserting opcodes and operands in the program memory.

After completing the design, the microcontroller is implemented on FPGA DE0-nano board as shown in the figure below.
Microcontroller in VHDL

Friday, December 16, 2016

32-bit Unsigned Divider in Verilog

In this project, a 32-bit unsigned divider is implemented in Verilog using both structural and behavioral models. The Verilog code for the divider is synthesizable and can be implemented on FPGA. 

verilog code for unsigned divider

Saturday, December 10, 2016

Fixed-Point Matrix Multiplication in Verilog[Full code+Tutorials]

This project is to implement a synthesizable fixed point matrix multiplication in Verilog HDL. Two fixed point matrixes A and B are BRAMs created by Xilinx Core Generator. After multiplying these two matrixes, the result is written to another matrix which is BRAM. The testbench code reads the content of the output matrix and writes to a "result.dat" file to check the result.

 fixed-point matrix multiplication in Verilog

Monday, December 5, 2016

Verilog Implementation of Plate License Recognition on FPGA

      A plate license recognition system is implemented in Matlab and then it is implemented on FPGA Xilinx Spartan-6 using Verilog. Below is the test environment for the system on FPGA.

fpga4student.com